روش موجک برای حل معادلات دیفرانسیل کسری
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده ریاضی
- نویسنده مینا قاسمی طالخونچه
- استاد راهنما علی داوری
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1391
چکیده
در حال حاضر محاسبات کسری مورد توجه بسیاری از پژوهشگران قرار گرفته است. همچنین معادلات دیفرانسیل کسری در رشته های مختلف علوم مانند مکانیک، فیزیک، زیست شناسی و مهندسی به کار برده می شوند. به علت افزایش کاربرد این دسته از معادلات توجه ویژه ای به روش های عددی و دقیق معادلات دیفرانسیل کسری شده است. اخیرا استفاده از ماتریس های عملیاتی از مرتبه کسری برای حل معادلات دیفرانسیل مرتبه کسری توسعه پیدا کرده است. در این تحقیق با مبحث حساب کسری و موجک ها از جمله موجک هار و لژاندر آشنا می شویم. سپس به معرفی ماتریس های عملیاتی مرتبه کسری انتگرال برای موجک های لژاندر و هار می پردازیم و از آن برای حل معادلات دیفرانسیل مرتبه کسری استفاده می کنیم. پس از انجام عملیات دستگاهی از معادلات جبری را به دست می آوریم و بعد از حل آن به نتیجه نهایی می رسیم. با چند مثال نتایج به دست آمده از این روش با روش های عددی دیگر مقایسه می شود.
منابع مشابه
بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
متن کاملحل معادلات دیفرانسیل کسری با روش تبدیل دیفرانسیل و حل معادلات انتگرو-دیفرانسیل کسری با استفاده از برخی موجک ها
چکیده بسیاری از مسائل مهم فیزیکی و مکانیکی به معادلات انتگرو-دیفرانسیل منجر می شوند، ولی در عمل تعداد کمی از این معادلات را می توان به روش تحلیلی حل کرد و جواب دقیق آن ها را بدست آورد. بنابراین از روش های عددی برای محاسبه جواب تقریبی آن ها استفاده می کنیم. در این پایان نامه از موجک های سینوس-کسینوس و ماتریس عملیاتی آن برای بدست آوردن جواب عددی معادلات انتگرو-دیفرانسیل غیرخطی از مرتبه کسری است...
15 صفحه اولبهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
متن کاملحل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی
در این مقاله، روش گالرکین ناپیوستهی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبهی کسری را در حالت کلی به کار میبریم. در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر میسازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...
متن کاملروش بدون شبکه برای حل عددی معادلات دیفرانسیل از مرتبه کسری
در این مقاله یک تکنیک کلی شناخته شده با عنوان روش بدون شبکه برای حل معادلات دیفرانسیل از مرتبه کسری درنظرگرفته شده است.جواب دقیق را با کمک روش مبتنی بر هم محلی توابع پایه شعاعی مورد تقریب قرار میدهیم.این تکنیک نقش مهمی که ایفا می کند معادله دیفرانسیل کسری را به یک دستگاه معادلات تقلیل می دهد.نتایج عددی بیانگر دقت وتوانایی این روش است.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده ریاضی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023